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Abstract— Quantitative kinetic analysis of dynamic cardiac sin-
gle photon emission computed tomography (SPECT) data has the
potential to provide better contrast between healthy and diseased
tissue, compared to static images. However, imaging a rapidly
changing radiopharmaceutical distribution with the use of a mov-
ing gantry yields inconsistent projection data that can generate
artifacts in a time sequence of conventional image reconstructions.
The artifacts can lead to biases in kinetic parameters estimated
from the image sequence. This source of bias can be eliminated by
estimating B-spline models for time-activity curves directly from
the projections. In this study, we perform Monte Carlo simulations
to determine how the polynomial order and initial time sampling
of the splines affect the accuracy and precision of compartmental
model parameters obtained from directly estimated time-activity
curves. The Mathematical Cardiac Torso (MCAT) phantom is
used to simulate a realistic 15 min dynamic99mTc-teboroxime
patient study in which 10 million total events are detected. For
a large volume of normal myocardium (250 cc), the relative bias
of the uptake and washout parameter sample means does not
exceed 0.22% when using cubic or quadratic splines that provide
rapid initial sampling. The coefficient of variation is about 1%. For
small (8.4 cc) myocardial defects that exhibit reduced uptake and
accelerated washout, the relative bias and coefficient of variation
increase to maximum values of about 16% and 49%, respectively.
These levels of accuracy and precision allow the defects to be
discriminated from the normal myocardium.

Index Terms— dynamic single photon emission computed to-
mography (SPECT), fully four-dimensional (4-D) reconstruction,
kinetic parameter estimation

I. I NTRODUCTION

QUANTITATIVE kinetic analysis of dynamic cardiac sin-
gle photon emission computed tomography (SPECT) data

has the potential to provide better contrast between healthy
and diseased tissue, compared to static images [1]. However,
imaging a rapidly changing radiopharmaceutical distribution
with the use of a moving gantry yields inconsistent projection
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data that can generate artifacts in a time sequence of conven-
tional image reconstructions. The artifacts can lead to biases in
kinetic parameters estimated from time-activity curves obtained
by overlaying volumes of interest on the image sequence. This
source of bias can be eliminated by faithfully modeling the time
variation of the activity distribution throughout the projected
field of view and estimating temporal model parameters directly
from the projection data [2]–[10].

Previously, we used B-splines to model the time courses of
activity within segmented volumes and developed fast methods
to estimate spline model coefficients and their statistical uncer-
tainties directly from dynamic SPECT projection data [6], [10].
In the present work, we perform Monte Carlo simulations of
a realistic dynamic cardiac99mTc-teboroxime patient study to
determine how the polynomial order and initial time sampling
of the splines affect the accuracy and precision of compartmen-
tal model parameters obtained from directly estimated time-
activity curves.

II. M ETHODS

A. Direct Temporal B-Spline Model Estimation

Smooth time-activity curves for segmented volumes encom-
passing the projected field of view can be estimated directly
from dynamic SPECT projection data as follows. This method
can be applied to projection data acquired with the use of any
collimator or orbit geometry, provided that the data yield a
preliminary image reconstruction that can be used to segment
the activity distribution throughout the projected field of view.

The spline model for the time-activity curve for segmented
volumem is

Am(t) =
N∑

n=1

amnV n(t), (1)

where amn are model coefficients,V n(t) are B-spline basis
functions [11], andN is the number of basis functions. Splines
with smaller support typically are used to model rapidly chang-
ing portions of curves, while splines with larger support are
used to model slow changes (e.g., [12]).

The detected count rate at timet along rayi is modeled as

Pi(t) =
M∑

m=1

Um
i (t)Am(t) =

M∑
m=1

N∑
n=1

amnUm
i (t)V n(t), (2)



2002 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD(IN PRESS—PREPRINT) 2

where Um
i (t) is the spatial projection, along rayi, of the

indicator function for volumem and M is the number of
volumes encompassing the projected field of view.

The model for the projection data is obtained by integrating
(2) overL contiguous time intervals that span the data acqui-
sition from timet0 = 0 to time tL = T :

pil =
M∑

m=1

N∑
n=1

amn

∫ tl

tl−1

Um
i (τ)V n(τ)dτ. (3)

If the time intervals are short enough so that each segmented
volume projection functionUm

i (t) is approximated well by a
piecewise constant function with amplitudeum

il during time
interval [tl−1, tl], then the model for the projection data can
be simplified:

pil =
M∑

m=1

N∑
n=1

amnum
il vn

l , (4)

wherevn
l are the integrals

∫ tl

tl−1
V n(τ)dτ of the temporal B-

spline basis functions.
The temporal spline model coefficientsamn are estimated

by minimizing the sum of squared differences between the
measured and modeled projections:

χ2 =
I∑

i=1

L∑
l=1

(p∗il − pil)2, (5)

where p∗il are the measured projections andI is the number
of projection rays acquired simultaneously by the detector(s).
For a periodic (e.g., multi-rotation circular) orbit, the spline
model coefficientsamn, their covariance matrix, and the global
precision of time-activity curve models can be estimated using
fast methods that take advantage of periodicity in theum

il

factors [6], [10].

B. Nonlinear Compartmental Modeling

Directly estimated spline models yield smooth time-activity
curves that can have a variety of shapes. In many cases the
relationship between the time-activity curves for the blood pool
and a tissue volume of interest is described accurately by a
compartmental model. The compartmental model parameters
have physiological meaning and can provide a quantitative
measure of tissue perfusion [1]. It has been hypothesized that
compartmental analysis may also be useful for assessing tissue
viability [4].

For the one-compartment kinetic model (Fig. 1), the relation-
ship between the blood input function,B(t), and the activity
in the tissue in volumem, Qm(t), is modeled to be

dQm(t)
dt

= km
21B(t)− km

12Q
m(t), (6)

wherekm
21 is the uptake rate parameter andkm

12 is the washout
rate parameter. For initial conditions of zero, the tissue activity

B(t)
km
21

km
12

Qm(t)

Fig. 1. Compartmental model for99mTc-teboroxime in the myocardium.

is the convolution of the blood input function with a single
decaying exponential:

Qm(t) = km
21

∫ t

0

B(τ)e−km
12(t−τ)dτ = km

21C
m(t). (7)

Total activity in volumem is given bykm
21C

m(t) + fm
v B(t),

wherefm
v is the fraction of vasculature in the volume.

The compartmental model parameterskm
21, km

12, and fm
v

are estimated by minimizing the sum of squared differences
between the spline and compartmental models:

χ2
m =

L∑
l=1

{
N∑

n=1

âmnvn
l −

∫ tl

tl−1

[km
21Ĉ

m(τ) + fm
v B̂(τ)]dτ

}2

,

(8)

where âmn are values for spline model coefficients that min-
imize (5),

∑N
n=1 âmnvn

l is the integral of the temporal spline
model for total activity in volumem during time interval
[tl−1, tl], Ĉm(τ) is the convolution

∫ τ

0
B̂(τ ′)e−km

12(τ−τ ′)dτ ′,
andB̂(τ) is derived from the temporal spline model for activity
in the blood pool.

III. C OMPUTERSIMULATIONS

We performed Monte Carlo simulations of a realistic dy-
namic cardiac99mTc-teboroxime patient study acquired on a
single-detector SPECT system. The goal was to determine how
the polynomial order and initial time sampling of the temporal
B-spline basis functions affect the accuracy and precision
of compartmental model parameters obtained from directly
estimated time-activity curves.

Simulated spatial distributions were obtained with the use
of the Mathematical Cardiac Torso (MCAT) phantom [13].
The emission phantom (Fig. 2) was composed of 128 con-
tiguous 1.75 mm-thick slices and containedM = 6 volumes
of interest: the blood pool, three myocardial tissue volumes
(normal myocardium, septal defect, and lateral defect), liver,
and background tissue. Each volume was modeled to contain
spatially uniform activity.

The simulated time-activity curves for the six emission
volumes are shown in Fig. 3. The time-activity curves for
the three myocardial volumes of interest and the liver were
generated by using the blood pool curve as the input to one-
compartment models that have kinetics corresponding to those
of 99mTc-teboroxime [14].
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Fig. 2. Transverse cross section through MCAT emission phantom. White
lines depict data truncation that results from use of cone beam collimators.

The simulated 15-min dynamic SPECT data acquisition
consisted of one 360◦ circular rotation per minute and 120 pro-
jection angles per rotation. Projection data were obtained si-
multaneously alongI = 2048 rays (64 transverse× 32 axial)
during each ofL = 1800 contiguous 0.5-s time intervals, to
yield a total of about 3.7 million projection measurements. The
projection bins were 7 mm× 7 mm at the detector, which
was 30 cm from the center of the field of view. The detector
was offset 1 cm from cone beam collimators that had a hole
diameter of 2 mm and a length of 4 mm. The focal length
of the collimators was 70 cm, which resulted in truncation of
the data (Fig. 2). Projections were attenuated with the use of
the corresponding MCAT attenuation phantom. Attenuation and
geometric point response were modeled with the use of a ray-
driven projector with line length weighting [15]. Scatter was
not modeled. The amplitude of the blood input function was
adjusted so that about 10 million total events were detected.

For each of 24 sets of temporal B-spline basis functions,
time-activity curve models were estimated directly from 1000
realizations of data having Poisson noise. Each set of basis
functions consisted ofN = 16 splines that span 15 time
segments having geometrically increasing length (e.g., Fig. 4).
Piecewise cubic, quadratic, linear, or constant B-splines were
used with initial time segment lengths of 2.5, 5, 10, 20, 40, or
60 s. The shorter initial time segment lengths provided a higher
density of temporal spline basis functions at the beginning of
the simulated acquisition, when the activity concentrations were
changing most rapidly (Fig. 3). The 60 s initial time segment
length provided basis functions spaced uniformly in time. The
cubic, quadratic, and linear B-splines allowed modeling of
curves that were continuous through their second, first, and
zeroth derivative, respectively.

Given a temporal B-spline basis set and a noisy realization
of projection data, we calculated the 96amn coefficients, their
covariance matrix, and the global precision of time-activity
curve models in 34 s using a 194-MHz R10000-based SGI
workstation and the fast methods presented in [6], [10]. We
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Fig. 3. Simulated99mTc-teboroxime time-activity curves.

0

0.25

0.5

0.75

1.0

3 6 9 12 15

 

time (min)

 

n = 13

Fig. 4. Sixteen piecewise quadratic B-spline temporal basis functions that
have an initial time segment length of 10 s. The thirteenth spline is shown as
a solid curve.

estimated compartmental model parameters from the spline
time-activity curve models in 18 s using the program RFIT [16].

The computer simulation results are presented in Figs. 5
and 6. For each compartmental model parameter, relative bias
was calculated as the magnitude of the difference between
the sample mean and the simulated value, normalized by the
simulated value. The coefficient of variation was calculated by
normalizing the sample standard deviation by the simulated
value. The use of cubic, quadratic, or linear splines and an
initial time sampling of 20 s or less reduced compartmental
model parameter bias substantially without unduly increasing
the coefficient of variation.

For the large volume of normal myocardium (250 cc), the
relative bias of the sample mean of the uptake and washout
parameters did not exceed 0.22%, for cubic or quadratic splines
and an initial time sampling of 20 s or less. The coefficient
of variation of the parameters was about 1%. For the small
(8.4 cc) defects that exhibit reduced uptake and accelerated
washout, the relative bias and coefficient of variation increased
to maximum values of about 16% and 49%, respectively, for
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Fig. 5. Effects of temporal spline modeling on the tissue uptake parameter,km
21. The simulated values for normal myocardium, septal defect, and lateral defect

were 0.7, 0.3, and 0.5 min−1, respectively. The “∗” symbols denote relative bias values observed for 1000 realizations of noisy projections. The “◦” symbols
denote the observed coefficients of variation.

cubic or quadratic splines and an initial time sampling of
20 s or less. The increases were due to the relatively small
size of the defects and the relatively small amplitude and
temporal support of their time-activity curves. Nonetheless,
these levels of accuracy and precision allowed the defects to
be discriminated from the normal myocardium.

IV. D ISCUSSION

The computer simulation results presented in Section III
suggest that accurate and precise estimates of compartmental
model parameters for relatively large tissue volumes can be ob-
tained quickly from time-activity curves estimated directly from
dynamic SPECT projection data. Piecewise cubic or quadratic
B-spline basis functions can model typical time-activity curves
accurately and provide desired temporal regularization.

As part of future work, parameter estimates can be refined
by jointly estimating the blood time-activity spline curve and
tissue compartmental models directly from projection data.
Incorporation of the compartmental relationship between blood
and tissue activities into the model for the projection data
will provide more temporal regularization than is provided by
splines alone. For example, the use of splines as described
in Section II-A introduces 16 parameters for each volume of
interest and imposes no functional form on the relationship

between the blood and tissue time-activity curves. By compar-
ison, the use of one-compartment models introduces only three
parameters for each tissue volume and constrains the tissue
activity to be a convolution of the blood activity. This additional
temporal regularization in the model for the projection data may
improve the accuracy and precision of compartmental models
for relatively small tissue volumes such as the myocardial
defects simulated in Section III.
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